In this instructor-led, live training in 東京, participants will learn about the technology offerings and implementation approaches for processing graph data. The aim is to identify real-world objects, their characteristics and relationships, then model these relationships and process them as data using a Graph Computing (also known as Graph Analytics) approach. We start with a broad overview and narrow in on specific tools as we step through a series of case studies, hands-on exercises and live deployments.
By the end of this training, participants will be able to:
Understand how graph data is persisted and traversed.
Select the best framework for a given task (from graph databases to batch processing frameworks.)
Implement Hadoop, Spark, GraphX and Pregel to carry out graph computing across many machines in parallel.
View real-world big data problems in terms of graphs, processes and traversals.