コース概要
Introduction
Overview of Spark Streaming Features and Architecture
- Supported data sources
- Core APIs
Preparing the Environment
- Dependencies
- Spark and streaming context
- Connecting to Kafka
Processing Messages
- Parsing inbound messages as JSON
- ETL processes
- Starting the streaming context
Performing a Windowed Stream Processing
- Slide interval
- Checkpoint delivery configuration
- Launching the environment
Prototyping the Processing Code
- Connecting to a Kafka topic
- Retrieving JSON from data source using Paw
- Variations and additional processing
Streaming the Code
- Job control variables
- Defining values to match
- Functions and conditions
Acquiring Stream Output
- Counters
- Kafka output (matched and non-matched)
Troubleshooting
Summary and Conclusion
要求
- Experience with Python and Apache Kafka
- Familiarity with stream-processing platforms
Audience
- Data engineers
- Data scientists
- Programmers
お客様の声 (5)
Engagement with the Trainer A number of relevant Exercises and Labs Practical Exams
Salim - SICPA SA
コース - Administration of Kafka Message Queue
先生のインタラクティブなアプローチ。直接的な話ではなく、聴衆からの質問に応じて行動します。
Rens - Canon Medical Informatics Europe B.V.
コース - Administration of Kafka Topic
Machine Translated
ラボとスライドは、Jorge の知識と Kafka への愛情とうまく組み合わされています。
Willem - BMW SA
コース - Apache Kafka for Developers
Machine Translated
Sufficient hands on, trainer is knowledgable
Chris Tan
コース - A Practical Introduction to Stream Processing
素晴らしいスキル、例、非常に良い練習
Marek Konieczny - G2A.COM Limited
コース - Kafka for Administrators
Machine Translated