コース概要
Introduction
- Difference between statistical learning (statistical analysis) and machine learning
- Adoption of machine learning technology and talent by finance and banking companies
Different Types of Machine Learning
- Supervised learning vs unsupervised learning
- Iteration and evaluation
- Bias-variance trade-off
- Combining supervised and unsupervised learning (semi-supervised learning)
Machine Learning Languages and Toolsets
- Open source vs proprietary systems and software
- Python vs R vs Matlab
- Libraries and frameworks
Machine Learning Case Studies
- Consumer data and big data
- Assessing risk in consumer and business lending
- Improving customer service through sentiment analysis
- Detecting identity fraud, billing fraud and money laundering
Hands-on: Python for Machine Learning
- Preparing the Development Environment
- Obtaining Python machine learning libraries and packages
- Working with scikit-learn and PyBrain
How to Load Machine Learning Data
- Databases, data warehouses and streaming data
- Distributed storage and processing with Hadoop and Spark
- Exported data and Excel
Modeling Business Decisions with Supervised Learning
- Classifying your data (classification)
- Using regression analysis to predict outcome
- Choosing from available machine learning algorithms
- Understanding decision tree algorithms
- Understanding random forest algorithms
- Model evaluation
- Exercise
Regression Analysis
- Linear regression
- Generalizations and Nonlinearity
- Exercise
Classification
- Bayesian refresher
- Naive Bayes
- Logistic regression
- K-Nearest neighbors
- Exercise
Hands-on: Building an Estimation Model
- Assessing lending risk based on customer type and history
Evaluating the performance of Machine Learning Algorithms
- Cross-validation and resampling
- Bootstrap aggregation (bagging)
- Exercise
Modeling Business Decisions with Unsupervised Learning
- When sample data sets are not available
- K-means clustering
- Challenges of unsupervised learning
- Beyond K-means
- Bayes networks and Markov Hidden Models
- Exercise
Hands-on: Building a Recommendation System
- Analyzing past customer behavior to improve new service offerings
Extending your company's capabilities
- Developing models in the cloud
- Accelerating machine learning with GPU
- Applying Deep Learning neural networks for computer vision, voice recognition and text analysis
Closing Remarks
要求
- Experience with Python programming
- Basic familiarity with statistics and linear algebra
お客様の声 (2)
the ML ecosystem not only MLFlow but Optuna, hyperops, docker , docker-compose
Guillaume GAUTIER - OLEA MEDICAL
コース - MLflow
I enjoyed participating in the Kubeflow training, which was held remotely. This training allowed me to consolidate my knowledge for AWS services, K8s, all the devOps tools around Kubeflow which are the necessary bases to properly tackle the subject. I wanted to thank Malawski Marcin for his patience and professionalism for training and advice on best practices. Malawski approaches the subject from different angles, different deployment tools Ansible, EKS kubectl, Terraform. Now I am definitely convinced that I am going into the right field of application.