Thank you for sending your enquiry! One of our team members will contact you shortly.
Thank you for sending your booking! One of our team members will contact you shortly.
コース概要
Introduction to Ollama for LLM Deployment
- Overview of Ollama’s capabilities
- Advantages of local AI model deployment
- Comparison with cloud-based AI hosting solutions
Setting Up the Deployment Environment
- Installing Ollama and required dependencies
- Configuring hardware and GPU acceleration
- Dockerizing Ollama for scalable deployments
Deploying LLMs with Ollama
- Loading and managing AI models
- Deploying Llama 3, DeepSeek, Mistral, and other models
- Creating APIs and endpoints for AI model access
Optimizing LLM Performance
- Fine-tuning models for efficiency
- Reducing latency and improving response times
- Managing memory and resource allocation
Integrating Ollama into AI Workflows
- Connecting Ollama to applications and services
- Automating AI-driven processes
- Using Ollama in edge computing environments
Monitoring and Maintenance
- Tracking performance and debugging issues
- Updating and managing AI models
- Ensuring security and compliance in AI deployments
Scaling AI Model Deployments
- Best practices for handling high workloads
- Scaling Ollama for enterprise use cases
- Future advancements in local AI model deployment
Summary and Next Steps
要求
- Basic experience with machine learning and AI models
- Familiarity with command-line interfaces and scripting
- Understanding of deployment environments (local, edge, cloud)
Audience
- AI engineers optimizing local and cloud-based AI deployments
- ML practitioners deploying and fine-tuning LLMs
- DevOps specialists managing AI model integration
14 時間